A product formula for the higher rank Drinfeld discriminant function
نویسندگان
چکیده
منابع مشابه
A Lefschetz formula for higher rank
In this paper a Lefschetz formula is proved for the geodesic flow of a compact locally symmetric space. The flow is described in terms of actions of split tori of various dimensions and the geometric side of the Lefschetz formula is a sum over closed geodesics which correspond to a given torus. The cohomological side is given in terms of Lie algebra cohomology.
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کامل1 Product formula for the Jacobi theta function
University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and browsing via the World Wide Web. Users are not permitted to mount this file on any network servers.
متن کاملAn explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two
Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2017
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2017.02.010